Characterization of the 2′,3′ cyclic phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase-phosphatase and bacteriophage λ phosphatase

نویسندگان

  • Niroshika Keppetipola
  • Stewart Shuman
چکیده

Clostridium thermocellum polynucleotide kinase-phosphatase (CthPnkp) catalyzes 5' and 3' end-healing reactions that prepare broken RNA termini for sealing by RNA ligase. The central phosphatase domain of CthPnkp belongs to the dinuclear metallophosphoesterase superfamily exemplified by bacteriophage lambda phosphatase (lambda-Pase). CthPnkp is a Ni(2+)/Mn(2+)-dependent phosphodiesterase-monoesterase, active on nucleotide and non-nucleotide substrates, that can be transformed toward narrower metal and substrate specificities via mutations of the active site. Here we characterize the Mn(2+)-dependent 2',3' cyclic nucleotide phosphodiesterase activity of CthPnkp, the reaction most relevant to RNA repair pathways. We find that CthPnkp prefers a 2',3' cyclic phosphate to a 3',5' cyclic phosphate. A single H189D mutation imposes strict specificity for a 2',3' cyclic phosphate, which is cleaved to form a single 2'-NMP product. Analysis of the cyclic phosphodiesterase activities of mutated CthPnkp enzymes illuminates the active site and the structural features that affect substrate affinity and k(cat). We also characterize a previously unrecognized phosphodiesterase activity of lambda-Pase, which catalyzes hydrolysis of bis-p-nitrophenyl phosphate. lambda-Pase also has cyclic phosphodiesterase activity with nucleoside 2',3' cyclic phosphates, which it hydrolyzes to yield a mixture of 2'-NMP and 3'-NMP products. We discuss our results in light of available structural and functional data for other phosphodiesterase members of the binuclear metallophosphoesterase family and draw inferences about how differences in active site composition influence catalytic repertoire.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and mechanism of the 2′,3′ phosphatase component of the bacterial Pnkp-Hen1 RNA repair system

Pnkp is the end-healing and end-sealing component of an RNA repair system present in diverse bacteria from many phyla. Pnkp is composed of three catalytic modules: an N-terminal polynucleotide 5' kinase, a central 2',3' phosphatase and a C-terminal ligase. The phosphatase module is a Mn(2+)-dependent phosphodiesterase-monoesterase that dephosphorylates 2',3'-cyclic phosphate RNA ends. Here we r...

متن کامل

Distinct enzymic functional groups are required for the phosphomonoesterase and phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase/phosphatase.

The central phosphatase domain of Clostridium thermocellum polynucleotide kinase/phosphatase (CthPnkp) belongs to the dinuclear metallophosphoesterase superfamily. Prior mutational studies of CthPnkp identified 7 individual active site side chains (Asp-187, His-189, Asp-233, Asn-263, His-323, His-376, and Asp-392) required for Ni2+-dependent hydrolysis of p-nitrophenyl phosphate. Here we find t...

متن کامل

Structure of a tRNA repair enzyme and molecular biology workhorse: T4 polynucleotide kinase.

T4 phage polynucleotide kinase (PNK) was identified over 35 years ago and has become a staple reagent for molecular biologists. The enzyme displays 5'-hydroxyl kinase, 3'-phosphatase, and 2',3'-cyclic phosphodiesterase activities against a wide range of substrates. These activities modify the ends of nicked tRNA generated by a bacterial response to infection and facilitate repair by T4 RNA liga...

متن کامل

Mechanism of RNA 2′,3′-cyclic phosphate end healing by T4 polynucleotide kinase–phosphatase

T4 polynucleotide kinase-phosphatase (Pnkp) exemplifies a family of enzymes with 5'-kinase and 3'-phosphatase activities that function in nucleic acid repair. The polynucleotide 3'-phosphatase reaction is executed by the Pnkp C-terminal domain, which belongs to the DxDxT acylphosphatase superfamily. The 3'-phosphatase reaction entails formation and hydrolysis of a covalent enzyme-(Asp165)-phosp...

متن کامل

Recognition of DNA substrates by T4 bacteriophage polynucleotide kinase.

T4 phage polynucleotide kinase (PNK) displays 5'-hydroxyl kinase, 3'-phosphatase and 2',3'-cyclic phosphodiesterase activities. The enzyme phosphorylates the 5' hydroxyl termini of a wide variety of nucleic acid substrates, a behavior studied here through the determination of a series of crystal structures with single-stranded (ss)DNA oligonucleotide substrates of various lengths and sequences....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007